Control of Tip Leakage in a High-Pressure Turbine Cascade Using Tip Blowing

Author:

Volino Ralph J.1

Affiliation:

1. Fellow ASME Mechanical Engineering Department, United States Naval Academy, Annapolis, MD 21402 e-mail:

Abstract

Blowing from the tip of a turbine blade was studied experimentally to determine if total pressure loss could be reduced. Experiments were done with a linear cascade in a low-speed wind tunnel. Total pressure drop through the blade row and secondary velocity fields in the passage between two blades were measured. Cases were documented with various blowing hole configurations on flat and squealer tipped blades. Blowing normal to the tip was not helpful and in some cases increased losses. Blowing from the bottom of a squealer cavity provided little benefit. With a flat tip, blowing from holes located near and inclined toward the pressure side generally reduced total pressure drop by reducing the effect of the tip leakage vortex. Holes near the axial location of maximum loading were most helpful, while holes closer to the leading and trailing edges were not as effective. Higher jet velocity resulted in larger total pressure drop reduction. With a tip gap of 1.5% of axial chord, jets with a velocity 1.5 times the cascade inlet velocity had a significant effect. A total pressure drop reduction of the order 20% was possible using a jet mass flow of about 0.4% of the main flow. Jets were most effective with smaller tip gaps, as they were more able to counter the leakage flow.

Funder

Glenn Research Center

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3