Effect of Squealer Tip on Rotor Heat Transfer and Efficiency

Author:

Ameri A. A.1,Steinthorsson E.2,Rigby D. L.3

Affiliation:

1. AYT Corporation, Brook Park, OH 44135

2. Institute for Computational Mechanics in Propulsion (ICOMP), NASA Lewis Research Center, Brook Park, OH 44142

3. NYMA, Inc., NASA Lewis Group, Brook Park, OH 44142

Abstract

Calculations were performed to simulate the tip flow and heat transfer on the GE-E3 first-stage turbine, which represents a modern gas turbine blade geometry. Cases considered were a smooth tip, 2 percent recess, and 3 percent recess. In addition, a two-dimensional cavity problem was calculated. Good agreement with experimental results was obtained for the cavity calculations, demonstrating that the k–ω turbulence model used is capable of representing flows of the present type. In the rotor calculations, two dominant flow structures were shown to exist within the recess. Also areas of large heat transfer rate were identified on the blade tip and the mechanisms of heat transfer enhancement were discussed. No significant difference in adiabatic efficiency was observed for the three tip treatments investigated.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 140 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3