Transient Temperature Data Analysis for a Supersonic Flight Test

Author:

Sahoo Niranjan1,Peetala Ravi Kumar1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India

Abstract

Determination of transient surface heat flux from the temperature data is one of the traditional techniques applied in many engineering applications. With respect to high speed flight experiments, the time scale of measured temperature data is usually very small (∼ms). So, one-dimensional heat conduction analysis is expensively used to infer surface heating rates on the body. For an analytical modeling, it is necessary to obtain a closed form solution from experimentally measured temperature data. In this paper, a temperature data obtained from a nickel film sensor during a supersonic flight test is considered for analysis. Three different curve fitting techniques are used to recover the temperature history of real time flight, namely, piecewise linear fit, polynomial fitting, and cubic-spline method. A one-dimensional transient heat transfer modeling is used to infer surface heating rates from the closed form temperature solutions. Results obtained from these analysis are compared and it is seen that peak surface heat flux values match very closely for polynomial and cubic-spline fitting of temperature data. But, the piecewise linear fit of temperature data underpredicts the peak surface heat flux value by four times from its counterparts.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3