The Effect of Periodic Unsteady Flow on Aerodynamics and Heat Transfer on a Curved Surface

Author:

Wright L.1,Schobeiri M. T.1

Affiliation:

1. Turbomachinery Performance Laboratory, Texas A&M University, College Station, TX 77843-3123

Abstract

Aerodynamic and heat transfer investigations were performed on a constant curvature curved plate in a subsonic wind tunnel facility for various wake passing frequencies under zero pressure gradient conditions. Steady and unsteady boundary layer transition measurements were taken on the concave surface at different wake passing frequencies in which a rotating squirrel cage was used to generate the unsteady wake flow. The data were analyzed using time-averaged and ensemble averaged techniques to provide insight into the growth of the boundary layer and transition. Ensemble averaged turbulence intensity contours in the temporal spatial domain showed that transition was induced for increasing wake passing frequency and structure. The local heat transfer coefficient distributions for the concave and convex surfaces were determined for each wake passing frequency using a liquid crystal heat transfer measurement technique. Aerodynamic and heat transfer investigations showed that higher wake passing frequencies caused earlier transition on the concave surface. Local Stanton numbers were calculated on the concave surface and compared to Stanton numbers predicted using a boundary layer and heat transfer calculation method. On the convex side, no effect of wake passing on heat transfer was observed, due to a separation bubble that induced transition.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3