Non-Darcy Natural Convection From a Vertical Cylinder Embedded in a Thermally Stratified and Nanofluid-Saturated Porous Media

Author:

Rashad A. M.1,Abbasbandy S.2,Chamkha Ali J.3

Affiliation:

1. Department of Mathematics, Faculty of Science, Aswan University, Aswan, Egypt

2. Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran e-mail:

3. Manufacturing Engineering Department, The Public Authority for Applied Education and Training, Shuweikh 70654, Kuwait

Abstract

In recent years, nanofluids have attracted attention as a new generation of heat transfer fluids in building heating, heat exchangers, plants, and automotive cooling applications because of their excellent thermal performance. Various benefits of the application of nanofluids include improved heat transfer, heat transfer system size reduction, minimal clogging, microchannel cooling, and miniaturization of systems. In this paper, a study of steady, laminar, natural convection boundary-layer flow adjacent to a vertical cylinder embedded in a thermally stratified nanofluid-saturated non-Darcy porous medium is investigated. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis, and a generalized porous media model, which includes inertia and boundary effects, is employed. The cylinder surface is maintained at a constant nanoparticles volume fraction, and the wall temperature is assumed to vary with the vertical distance according to the power law form. The resulting governing equations are nondimensionalized and transformed into a nonsimilar form and then solved by Keller box method. A comparison is made with the available results in the literature, and our results are in very good agreement with the known results. A parametric study of the physical parameters is made, and a representative set of numerical results for the velocity, temperature, and volume fraction, as well as local shear stress and local Nusselt and Sherwood numbers, are presented graphically. The salient features of the results are analyzed and discussed. The results indicate that, when the buoyancy ratio or modified Grashof number increases, all of the local shear stress, local Nusselt number, and the local Sherwood number enhance while the opposite behaviors are predicted when the thermophoresis parameter increases. Moreover, increasing the value of the surface curvature parameter leads to increases in all of the local shear stress and the local Nusselt and Sherwood numbers while the opposite behaviors are obtained when either of the thermal stratification parameter or the boundary effect parameter increases.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference29 articles.

1. Enhancing Thermal Conductivity of Fluids With Nanoparticle,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3