Flow of viscous nanofluids across a non-linear stretching sheet

Author:

PATTNAIK Pradyumna Kumar1ORCID,SYED Shoeb Ahmed2ORCID,MISHRA Sujogya1ORCID,JENA Swarnalata3ORCID,ROUT Sachindar Kumar4ORCID,MUDULI Kamalakanta2ORCID

Affiliation:

1. Department of Mathematics, Odisha University of Technology and Research, Bhubaneswar, Odisha 751029, India

2. Department of Mechanical Engineering, Papua New Guinea University of Technology, Lae, 411, Papua New Guinea

3. Department of Mathematics, Centurion University of Technology and Management, Odisha, 530013, India

4. Department of Mechanical Engineering, CV Raman Global University, Bhubaneswar, 752054, India

Abstract

This article aims to demonstrate the flow of viscous nanofluid over a non-linear stretching sheet. Considering thermal radiation and dissipative heat in the heat transport phenomenon encourages the flow properties. In generally, nanofluids are employed in heat transfer equip-ment because they improve the thermal characteristics of coolants present in the equipment. Additionally, these fluids possess unique features that have the potential to be applied in a variety of applications, such as pharmaceutical procedures, hybrid power engines, household refrigerators, grinding, and microchips, among others. Consequently, the current model is built to allow for the optimal selection of thermophysical parameters such as conductivity and viscosity, which will enhance the overall effectiveness of the study. Appropriate transfor-mation rules have been used to modify the highly non-linear PDEs into a couple of highly non-linear ODEs. An efficient built-in MATLAB bvp5C algorithm addresses the boundary value problem under consideration. Using the dimensionless parameters assumed in the prob-lem, changes in the velocity as well as the temperature profiles are shown, and rate coefficients, by using numerical simulations are also employed in tabular form. The important outcomes which are exposed in the study are; that the particle concentration is used as a controlling pa-rameter to reduce the nanofluid velocity, whereas it favours enhancing the fluid temperature and the radiating heat along with the coupling parameter due to the inclusion of dissipative heat also encourages to overshoot the temperature profile.

Publisher

Journal of Thermal Engineering

Subject

Fluid Flow and Transfer Processes,Energy Engineering and Power Technology,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3