Semi-Analytical Model for the Transient Analysis of the Pressure in Vertically Fractured Wells in Reservoirs Considering the Influence of Natural Fractures

Author:

Chen Yiming1,Zhang Qiushi1,Zhao Zhiming2,Li Cunlei1,Wang Bo3

Affiliation:

1. Department of Oil and Gas Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113000, China

2. Department of Petroleum Engineering, Panjin Vocational & Technical College, Panjin, Liaoning 124000, China

3. Petroleum Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada

Abstract

Abstract In addition to artificial fractures generated by hydraulic fracturing technology, natural fractures distributed in reservoirs will also affect the fluid flow process. To study the transient behavior of the pressure in fluid flows in reservoirs containing natural fractures, a semi-analytical model for vertically fractured wells with complex natural fracture networks was established. This model was based on the linear source function theory and the fracture discretization and coupling methods. It was solved by the Stehfest numerical inversion and the matrix transformation. The results of the study on the fluid flow stages in a reservoir with natural fractures indicated that the presence of natural fractures increased natural fracture flows. These flows were dominated by natural fractures and fracture interference stages and were different from the fluid flows observed in vertically fractured wells with a single main fracture. The sensitivity analysis on the influences of the fluid flow factors in the reservoirs with three types of natural fractures could provide a more detailed reference for the identification of the reservoir parameters and the transient characteristics of the flow stage. The different characteristic curves of the fluid flow in the reservoirs with different scale natural fractures could also provide a theoretical basis for determining the distribution of natural fractures in reservoirs.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3