Employing Deep Learning Neural Networks for Characterizing Dual-Porosity Reservoirs Based on Pressure Transient Tests

Author:

Kumar Pandey Rakesh1,Kumar Anil2,Mandal Ajay3,Vaferi Behzad4

Affiliation:

1. DIT University Department of Petroleum and Energy Studies, School of Engineering and Technology, , Dehradun 248009 , India

2. DIT University Data Science Research Group, School of Computing, , Dehradun 248009 , India

3. Indian Institute of Technology Department of Petroleum Engineering, , Dhanbad 826004 , India

4. Islamic Azad University Department of Chemical Engineering, Shiraz Branch, , Shiraz 7194685315 , Iran

Abstract

Abstract The deep learning model constituting two neural network models (i.e., densely connected and long short-term memory) has been applied for automatic characterization of dual-porosity reservoirs with infinite, constant pressure, and no-flow external boundaries. A total of 16 different prediction paradigms have been constructed (one classifier to identify the reservoir models and 15 regressors for predicting the dual-porosity reservoir characteristics). Indeed, wellbore storage coefficient, CDe2S, skin factor, interporosity flow coefficient, and storativity ratio have been estimated. The training pressure signals have been simulated using the analytical solution of the governing equations with varying noise percentages. The pressure drop and derivation of the noisy synthetic signals serve as the input signals to the intelligent scenario. The hyperparameters of the intelligent model have been carefully adjusted to improve its prediction performance. The trained classification model attained 99.48% and 99.32% accuracy over the training and testing datasets. The separately trained 15 regressors converged well to estimate the reservoir parameters. The model performance has been demonstrated with three uniquely simulated and real-field cases. The results indicate that the compiled prediction model can accurately identify the reservoir model and estimate the corresponding characteristics.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3