Affiliation:
1. Mechanical Engineering Department, Virginia Polytechnic Institute and State University, 114-I Randolph Hall, Mail Code 0238, Blacksburg, VA 24061
2. U.S. Army RDECOM CERDEC, Fort Belvoir, VA 22060-5816
Abstract
Cylindrical pin fins with tip clearances are investigated in the low Reynolds number range 5<ReD<400 in a plane minichannel. Five tip gaps are investigated ranging from a full pin fin (t*=0.0) to a clearance of t*=0.4D*, where D* is the pin diameter. It is established that unlike high Reynolds number flows, the flow and heat transfer are quite sensitive to tip clearance. A number of unique flow effects, which increase the heat transfer performance, are identified. The tip gap affects the heat transfer coefficient by eliminating viscosity dominated end wall effects on the pin, by eliminating the pin wake shadow on the end walls, by inducing accelerated flow in the clearance, by reducing or impeding the development of recirculating wakes, and by redistributing the flow along the height of the channel. In addition, tip gaps also reduce form losses and friction factor. A clearance of t*=0.3D* was found to provide the best performance at ReD<100; however, for ReD>100, both t*=0.2D* and 0.3D* were comparable in performance.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献