Analysis of the Near Wake of Bluff Bodies in Ground Proximity

Author:

Balkanyi Szabolcs R.1,Bernal Luis P.2,Khalighi Bahram3

Affiliation:

1. Shell Global Solutions, Inc., Houston, TX

2. University of Michigan, Ann Arbor, MI

3. General Motors R&D Center, Warren, MI

Abstract

The effect of several drag reducing devices on the near wake of a generic ground vehicle body was investigated. Drag and base pressure measurements were conducted to identify the effects of the devices on the base drag. A Particle Image Velocimetry (PIV) study was conducted to determine changes of the near wake flow field. Averages of more than 200 PIV velocity vector fields were used to compute the mean velocity and turbulent stresses at several cross section planes. The results of the drag and base pressure measurements show that significant reductions of the total aerodynamic drag (as high as 48%) can be achieved with relatively simple devices. The results also indicated that models with base cavity have lower drag than their counter parts without it. The base pressure distributions showed a strong effect of the ground, resulting in decrease of pressure towards the lower half of the base. The PIV study showed that the extent of the recirculation region is not strongly affected by the drag reducing devices. The tested devices however, were found to have a strong effect on the underbody flow. A rapid upward deflection of the underbody flow in the near wake was observed. The devices were also found to reduce the turbulent stresses in the near wake. The turbulent stresses were found to decrease in magnitude with increasing drag reduction.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shape optimisation of teardrop trailers to minimise aerodynamic drag in articulated lorries;International Journal of Thermofluids;2023-05

2. Wake Flow Characteristics over an Articulated Lorry Model with/without AC-DBD Plasma Actuation;Applied Sciences;2019-06-14

3. Shape Optimization of Active and Passive Drag-Reducing Devices on a D-shaped Bluff Body;Notes on Numerical Fluid Mechanics and Multidisciplinary Design;2017-10-31

4. Experimental study of a pickup truck near wake;Journal of Wind Engineering and Industrial Aerodynamics;2010-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3