Fast Running Pool Fire Computer Code for Risk Assessment Calculations

Author:

Greiner Miles1,Suo-Anttila Ahti2

Affiliation:

1. University of Nevada at Reno, Reno, NV

2. Innovative Technology Solutions Corporation, Albuquerque, NM

Abstract

The Isis-3D computational fluid dynamics/radiation heat transfer computer code was developed to simulate heat transfer from large fires to engulfed packages for transportation risk studies. These studies require accurate estimates of the total heat transfer to an object and the general characteris tics of the object temperature distribution for a variety of fire environments. Since risk studies require multiple simulations, analysis tools must be rapid as well as accurate. In order to meet these needs Isis-3d employs reaction rate and radiation heat transfer models that allow it to accurately model large-fire heat transfer even when relatively coarse computational grids are employed. In the current work, parameters for the reaction rate model were selected based on comparison with soot volume fraction and temperature measurements acquired in a recent 6 m square pool fire under light wind conditions. The soot volume fraction Isis-3D uses to define the edge of the optically thick fire was determined using temperature measurements of a pipe engulfed 20-m-diameter pool fire with a steady 9.5 m/s crosswind. Accelerated simulations, in which the specific heat of the engulfed pipe was reduced by a factor of twelve below the measured values, reproduce the temperature data in the 11-minute crosswind fire using only 3.5 hours on a standard desktop workstation.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3