Validation of the Isis-3D Computer Code for Simulating Large Pool Fires Under a Variety of Wind Conditions

Author:

Greiner Miles1,Suo-Anttila Ahti2

Affiliation:

1. Professor of Mechanical Engineering, University of Nevada, Reno, Nevada 89557

2. Alion Science and Technology Corporation, 6000 Uptown Blvd. NE, Suite 300, Albuquerque, New Mexico 87110

Abstract

The Isis-3D computational fluid dynamics/radiation heat transfer computer code was developed to simulate heat transfer from large fires to engulfed packages for transportation risk studies. These studies require accurate estimates of the total heat transfer to an object and the general characteristics of the object temperature distribution for a variety of fire environments. Since risk studies require multiple simulations, analysis tools must be rapid as well as accurate. In order to meet these needs Isis-3D employs fuel evaporation reaction rate and radiation heat transfer models that allow it to accurately model large-fire heat transfer even when relatively coarse computational grids are employed. Reaction rate and soot radiation model parameters in Isis-3D have been selected based on experimental data. In this work, Isis-3D calculations were performed to simulate the conditions of three experiments that measured the temperature response of a 4.66 m diameter culvert pipe located at the leeward edge of 18.9 m and 9.45 m diameter pool fires in crosswinds with average speeds of 2.0, 4.6, and 9.5 m/s. Isis-3D accurately calculated the time-dependent temperatures in all three experiments. Accelerated simulations were performed in which the pipe specific heat was reduced compared to the measured value by a factor of four. This artificially increased the speed at which the pipe temperature rose and allowed the simulated fire duration to be reduced by a factor of four. A 700 sec fire with moderately unsteady wind conditions was accurately simulated in 10 hours on a standard workstation.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3