Influence of Acoustic Noise on the Dynamic Performance of MEMS Gyroscopes

Author:

Castro Simon1,Dean Robert1,Roth Grant1,Flowers George T.1,Grantham Brian2

Affiliation:

1. Auburn University, Auburn, AL

2. U.S. Army AMRDEC

Abstract

Advances in MEMS technology have resulted in relatively low cost gyroscopes and accelerometers and, correspondingly, inexpensive inertial measurement systems. This has opened up the field of applications for inertial measurement units (IMUs) and they are currently being proposed for use in a wide variety of possible applications, with environmental conditions ranging from mild to harsh. Of particular interest in this study are MEMS gyroscopes, which are based upon vibratory, rather than rotational, designs and are especially susceptible to the effects of acoustic noise, as compared to conventional gyroscopes. This is particularly true for certain applications. For example, in some aerospace environments, noise levels can be greater than 120 dB and extend over a frequency range greater than 20 kHz. Output signals can be overwhelmed by such effects, becoming extremely contaminated and noisy and, can even be completely saturated. So, it is important to develop an understanding of the influence of high levels of noise on MEMS gyroscope performance and to develop methodologies to mitigate such effects. In the present investigation, a series of experimental studies were conducted for a variety of MEMS gyroscope designs. Each unit was exposed to a range of acoustic noise amplitudes and frequencies. The output signals were recorded and analyzed. The results are presented and discussed in detail. Strategies for mitigating such effects were identified and tested. Those results are also discussed in detailed.

Publisher

ASMEDC

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ADC-Bank: Detecting Acoustic Out-of-Band Signal Injection on Inertial Sensors;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

2. Survey of Air, Sea, and Road Vehicles Research for Motion Control Security;IEEE Transactions on Intelligent Transportation Systems;2023-07

3. SoK: Rethinking Sensor Spoofing Attacks against Robotic Vehicles from a Systematic View;2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P);2023-07

4. Recovering Yaw Rate from Signal Injection Attack to Protect RV’s Direction;Information Security Applications;2023

5. EchoVib: Exploring Voice Authentication via Unique Non-Linear Vibrations of Short Replayed Speech;Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security;2021-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3