Affiliation:
1. State University of New York at Buffalo, Buffalo, NY
2. NEC Electronics, Detroit, MI
Abstract
A thermo mechanical fatigue life prediction model based on the theory of damage mechanics is presented. The damage evolution, corresponding to the material degradation under cyclic thermo mechanical loading, is quantified thermodynamic framework. The damage, as an internal state variable, is coupled with unified viscoplastic constitutive model to characterize the response of solder alloys. The damage-coupled viscoplastic model with kinematic and isotropic hardening is implemented in ABAQUS finite element package to simulate the cyclic softening behavior of solder joints. Several computational simulations of uniaxial monotonic tensile and cyclic shear tests are conducted to validate the model with experimental results. The behavior of an actual Ball Grid Array (BGA) package under thermal fatigue loading is also simulated and compared with experimental results.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献