Investigation of Enhanced Surface Spray Cooling

Author:

Silk Eric A.1,Kim Jungho2,Kiger Ken2

Affiliation:

1. NASA Goddard Space Flight Center

2. University of Maryland

Abstract

Experiments were conducted to study the effects of enhanced surfaces on heat transfer during spray cooling. The surface enhancements consisted of cubic pin fins, pyramids, and straight fins (uniform cross sectional straight fins) machined on the top surface of copper heater blocks. Each had a cross-sectional area of 2.0 cm2. Measurements were also obtained on a heater block with a flat surface for baseline comparison purposes. A 2×2 nozzle array was used with PF-5060 as the working fluid. Thermal performance data was obtained under nominally degassed (chamber pressure of 41.4 kPa) and gassy conditions (chamber with N2 gas at 101 kPa). The results show that the straight fins had the largest enhancement in heat flux. Critical heat flux (CHF) for this surface showed an increase of 55% in comparison to the flat surface for the nominally degassed condition. The cubic pin finned and pyramid surfaces provided slightly more than half the heat flux enhancement (30%–40% greater than the flat surface) of the straight fins. The gassy case showed that the straight fins again provided the largest enhancement (48%) in CHF relative to the flat surface. This was followed by the cubic pin fins, and pyramids which had increases of 31% and 18% respectively. No significant effect was observed in the surface temperature at which CHF occurs for either portion of the study.

Publisher

ASMEDC

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3