Variable Impedance Control of Powered Knee Prostheses Using Human-Inspired Algebraic Curves

Author:

Mohammadi Alireza1,Gregg Robert D.2

Affiliation:

1. Department of Electrical and Computer Engineering, The University of Michigan, Dearborn, MI 48128

2. Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080; Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080

Abstract

Abstract Achieving coordinated motion between transfemoral amputee patients and powered prosthetic joints is of paramount importance for powered prostheses control. In this article, we propose employing an algebraic curve representation of nominal human walking data for a powered knee prosthesis controller design. The proposed algebraic curve representation encodes the desired holonomic relationship between the human and the powered prosthetic joints with no dependence on joint velocities. For an impedance model of the knee joint motion driven by the hip angle signal, we create a continuum of equilibria along the gait cycle using a variable impedance scheme. Our variable impedance-based control law, which is designed using the parameter-dependent Lyapunov function framework, realizes the coordinated hip-knee motion with a family of spring and damper behaviors that continuously change along the human-inspired algebraic curve. In order to accommodate variability in the user's hip motion, we propose a computationally efficient radial projection-based algorithm onto the human-inspired algebraic curve in the hip-knee plane.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3