Numerical and Experimental Study of the Effect of Secondary Surfaces Fixed Over a Rectangular Vortex Generator

Author:

Kashyap Uddip1,Das Koushik2,Debnath Biplab Kumar1

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Meghalaya, Meghalaya 793003, India

2. Department of Mechanical Engineering, National Institute of Technology Meghalaya, Meghalaya 793003, India e-mail:

Abstract

In order to cool a heated surface surrounded by fluid flow, vortex generator plays a significant role. The presence of a vortex generator in the flow creates both latitudinal and longitudinal vortices. The vortices energize the boundary layer over the heated surface and excel convective mode of heat transfer. Therefore, the strength of these vortices is directly proportional to the heat transferal rate. The present study considers a vortex generator attached to a heated base plate. The system is studied numerically and experimentally. The existing rectangular vortex generator is modified computationally with a goal to escalate the overall heat transferal rate. The role of secondary surfaces fixed over the primary surface of the rectangular vortex generator is discussed. Water flows over the surface of the base plate at a Reynolds number of 350. And the plate has a constant heat flux of 1 kW/m2. The results show that the secondary surfaces fixed parallel to the heated plate over the vortex generator significantly augment the heat transfer rate to about 13.4%. However, it enhances the drag by 5.7%. A linear regression analysis predicts the suitable placement of the secondary surface with an enhancement of heat transfer rate of about 7.6%, with a decrease in the drag by about 0.7%. In order to validate the obtained results, the best configuration is fabricated and tested experimentally. The experimental outcomes are found to complement the numerical results. In this experiment, the modification yields 25% enhancement in heat transfer rate.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3