Effect of the Streamwise Orientation of a Pair of Vortex Generator on the Flow and Heat Transfer Characteristics in a Plain Channel

Author:

Mehra B.12,Simo Tala J. V.3,Habchi C.4,Russeil S.5,Bougeard D.5

Affiliation:

1. Institut Mines—Télécom, Univ. Lille IMT Lille Douai, , F-59508 Douai , France ;

2. HEI, Hautes Études d’Ingénieur EEA Department, , F-59046 Lille , France

3. Institut Mines—Télécom, Univ. Lille IMT Lille Douai, , F-59508 Douai , France

4. Notre Dame University—Louaize, Thermofluids Research Group , Zouk Moshbeh , Lebanon

5. IMT Lille Douai, Institut Mines—Télécom, Univ. Lille , F-59508 Douai , France

Abstract

Abstract For a rectangular channel flow, a variant of delta winglet vortex generator (VG) in common flow up (CFU) orientation is presented to enhance the thermal performance factor by decreasing the friction losses. The new vortex generator is a simple reversal of a standard CFU orientation such that the leading edge and suction side of the conventional CFU orientation of the winglet become the trailing edge and pressure side for the reverse common flow up (RCFU) orientation of the winglet, respectively. Numerical simulations were carried out for a three-dimensional, steady, laminar, and incompressible rectangular channel flow with and without the two VG configurations. Performance analysis was done for global Nusselt number and friction factor for different inter-winglet spacings of the VG pair at a Reynolds number of 1478. An increase of 2.3% in the thermal enhancement factor was achieved in RCFU compared to CFU orientation at an inter-winglet spacing equal to 0.02 times the channel height. At the highest inter-winglet spacing equal to 0.6 times the channel height, the CFU orientation exhibited a gain of 3.2% in the enhancement factor over the RCFU orientation. Heat transfer downstream of the vortex generator was shown to be impacted in the reverse configuration (RCFU) due to stronger vortex formation compared to a standard CFU configuration at the least inter-winglet spacing.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3