An Experimental Investigation on the Role of Hydrogen in the Emission Reduction and Performance Trade-Off Studies in an Existing Diesel Engine Operating in Dual Fuel Mode Under Exhaust Gas Recirculation

Author:

Kumar Bose Probir,Banerjee Rahul1

Affiliation:

1. Mechanical Engineering Department, National Institute of Technology, Agartala, Tripura 799055, India

Abstract

With emission legislations getting more stringent in order to comply with the responsibilities of environmental obligations, engine manufacturers are turning to explore new avenues to meet the paradox of curtailing particulate matter (PM) and NOx emissions on one hand and maintaining consumer expectations of reduced fuel consumption and increased thermal efficiency on the other. Studies dedicated in mitigating such paradoxical objectives have established novel emission reduction systems such as the diesel particulate filter (DPF) and selective catalytic reduction (SCR) after treatment systems but at the expense of increased complexity of deployment and cost. The present work explores the emission and performance characteristics of an existing four stroke single cylinder engine operating with a predefined flow rate of hydrogen as a dual fuel. The hydrogen was premixed with the incoming air and inducted during the duration of intake valve opening by means of an indigenously developed cam actuated electromechanical timed manifold injection technique. exhaust gas recirculation (EGR) (hot and cooled) technique has been implemented in the present work to reduce NOx emissions which were enriched with the same amount of hydrogen. Research studies carried out on the efficacy of EGR techniques have reported the inherent penalty of increasing the common diesel pollutants of smoke and particulate matter and fuel consumption at the expense of reducing NOx emissions. Trade-off studies in the present work revealed contrary results, where 20% cooled EGR under hydrogen enrichment registered a decrease of 9.2% and 12.3% in NOx emissions at 60% and 80% load as compared to diesel operation while simultaneously retaining a reduction of 4.6% and 1.9% in brake specific energy consumption (BSEC) along with 10% and 8.33% corresponding decrease in smoke emissions and a reduction of 11.30% and 12.31% in total unburnt hydrocarbon (TUHC) emissions. CO emissions were simultaneously decreased by 26.6% and 20.0% while CO2 emissions decreased by 24.5% and 29.1%, respectively, while maintaining 4.8% and 2% increase in brake thermal efficiency and a reduction of 23.3% and 18.95% in specific fuel consumption (SFC) (diesel) simultaneously at the respective loads. Similar trade-off potential, as was evident in the 10% EGR strategies, provide a strong motivation to explore the role of hydrogen as in situ dual fuel solution to counter the conflicting emission and performance requirements of contemporary diesel engines made to operate under EGR.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3