Impact of Hydrogen Mixture on Fuel Consumption and Exhaust Gas Emissions in a Truck with Direct-Injection Diesel Engine

Author:

Wang Muxi1,Matsugi Akira2,Kondo Yoshinori3,Sakamoto Yosuke134ORCID,Kajii Yoshizumi134

Affiliation:

1. Graduate School of Global Environmental Studies, Kyoto University, Kyoto 606-8501, Japan

2. National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Japan

3. National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan

4. Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan

Abstract

Hydrogen addition affects the composition of exhaust gases in vehicles. However, the effects of hydrogen addition to compression ignition engines in running vehicles have not been evaluated. Hydrogen-mixed air was introduced into the air intake of a truck equipped with a direct-injection diesel engine and running on a chassis dynamometer to investigate the effect of hydrogen addition on fuel consumption and exhaust gas components. The reduction in diesel consumption and the increase in hydrogen energy share (HES) showed almost linear dependence, where the percentage decrease in diesel consumption is approximately 0.6 × HES. The percentage reduction of CO2 showed a one-to-one relationship to the reduction in diesel consumption. The reduction in emissions of CO, PM, and hydrocarbons (except for ethylene) had one to one or a larger correlation with the reduction of diesel consumption. On the other hand, it was observed that NOx emissions increased, and the percentage increase of NOx was 1.5~2.0 times that of HES. The requirement for total energy supply was more when hydrogen was added than for diesel alone. In the actual running mode, only 50% of the energy of added hydrogen was used to power the truck. As no adjustments were made to the engine in this experiment, a possible disadvantage that could be improved by adjusting the combustion conditions.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electric or gasoline: a simple model to decide when buying a new vehicle;Environmental Research Communications;2024-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3