Affiliation:
1. Universita¨t Stuttgart, Stuttgart, Germany
2. MTU Aero Engines GmbH, Mu¨nchen, Germany
Abstract
A representative part of an active clearance control system for a low pressure turbine has been numerically investigated. The setup consisted of a cylindrical plenum with 20 inline arranged impinging jets at the bottom side discharging on a flat plate. The study focused on the influence of the nozzle geometry on the flow as well as heat transfer characteristics at the impingement plate and the discharge pressure drop. CFD (Computational Fluid Dynamics) simulations were performed for a constant Reynolds number ReD = 7,500 and different mean jet Mach numbers up to 0.7. Different length-to-diameter ratios of the jet holes (L/D) and various hole shapes (cylindrical, elliptic, convergent and divergent conical) were investigated to evaluate the performance of the impingement cooling configurations. The predictions showed a significant influence of the length-to-diameter ratio of the orifice bores on the heat transfer and the pressure losses. For L/D = 2 no suction of the ambient air in the nozzles was observed. In comparison to the configuration with L/D = 0.25 an improvement of the discharge coefficient of 9% for Ma = 0.7 and 20% for Ma = 0.17 was achieved. However, the highest heat transfer was observed for the smallest L/D-ratio of 0.25. The shape variation showed that only the elliptic jet holes with a ratio of AR = 0.5 enhanced the overall heat transfer and simultaneously reduced the pressure losses because of discharging onto the target plate. This result was found to be valid for all investigated jet Mach numbers. Additionally, for both elliptic jet aspect ratios of 0.5 and 2 the axis-switchover phenomenon of the flow was observed.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献