Numerical Investigation of Heat Transfer and Pressure Drop Characteristics for Different Hole Geometries of a Turbine Casing Impingement Cooling System

Author:

Ben Ahmed F.1,Tucholke R.1,Weigand B.1,Meier K.2

Affiliation:

1. Universita¨t Stuttgart, Stuttgart, Germany

2. MTU Aero Engines GmbH, Mu¨nchen, Germany

Abstract

A representative part of an active clearance control system for a low pressure turbine has been numerically investigated. The setup consisted of a cylindrical plenum with 20 inline arranged impinging jets at the bottom side discharging on a flat plate. The study focused on the influence of the nozzle geometry on the flow as well as heat transfer characteristics at the impingement plate and the discharge pressure drop. CFD (Computational Fluid Dynamics) simulations were performed for a constant Reynolds number ReD = 7,500 and different mean jet Mach numbers up to 0.7. Different length-to-diameter ratios of the jet holes (L/D) and various hole shapes (cylindrical, elliptic, convergent and divergent conical) were investigated to evaluate the performance of the impingement cooling configurations. The predictions showed a significant influence of the length-to-diameter ratio of the orifice bores on the heat transfer and the pressure losses. For L/D = 2 no suction of the ambient air in the nozzles was observed. In comparison to the configuration with L/D = 0.25 an improvement of the discharge coefficient of 9% for Ma = 0.7 and 20% for Ma = 0.17 was achieved. However, the highest heat transfer was observed for the smallest L/D-ratio of 0.25. The shape variation showed that only the elliptic jet holes with a ratio of AR = 0.5 enhanced the overall heat transfer and simultaneously reduced the pressure losses because of discharging onto the target plate. This result was found to be valid for all investigated jet Mach numbers. Additionally, for both elliptic jet aspect ratios of 0.5 and 2 the axis-switchover phenomenon of the flow was observed.

Publisher

ASMEDC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3