Characterizing the Effect of Radial Vane Height on Flame Migration in an Ultra Compact Combustor

Author:

LeBay Kenneth D.1,Polanka Marc D.1,Branam Richard D.1

Affiliation:

1. Air Force Institute of Technology, WPAFB, OH

Abstract

The Ultra Compact Combustor (UCC) has shown viable merit for significantly improving gas turbine combustor performance. UCC models for small engines can provide centrifugal loading up to 4,000 gs. However, as the scale of the combustor increases, the g-load will necessarily decrease and the radial vane height will increase. Thus, the importance of understanding flame migration over increasing radial vane heights is pivotal to the applicability of this design to larger engine diameters. The Air Force Institute of Technology’s Combustion Optimization and Analysis Laser laboratory studied this effect with a sectional UCC model using three different vane heights. By varying the mass flow rates of the circumferential UCC section, the g-loading was varied from 500–2,000 gs. Two-line Planar Laser Induced Fluorescence at 10Hz was used for 2D temperature profiles. High-speed video at 2kHz was also used for qualitative flame migration characterization. Several cases were studied varying the radial vane height, the circumferential g-load, and the UCC/core mass flow ratio but specifically focusing on the interaction between matching the core mass flow and the core freestream velocity among the different vane heights. Finally, the decreased core flow velocity for the same mass flow weakened the shear layer between the main and cavity flows and this allowed deeper flame migration into the core flow from the UCC. Control of the overall flame migration is the key to produce desirable combustor exit temperature profiles. Increased spans lead to higher velocity gradients and increased flame injection angles at the same mass flow rates. However, at the same core flow velocities and UCC to core flow velocity ratios the flame injection angle was relatively independent of the radial vane height and almost entirely dependent on the core flow velocity alone.

Publisher

ASMEDC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A New Spin on Small-Scale Combustor Geometry;Journal of Engineering for Gas Turbines and Power;2018-12-04

2. Optical Diagnostics in a High-g Combustion Cavity;52nd AIAA/SAE/ASEE Joint Propulsion Conference;2016-07-22

3. Enhancing Flow Migration and Reducing Emissions in Full Annular Ultra Compact Combustor;54th AIAA Aerospace Sciences Meeting;2016-01-02

4. Mechanisms for Enhanced Flow Migration from an Annular, High-g Ultra Compact Combustor;54th AIAA Aerospace Sciences Meeting;2016-01-02

5. Optimization of Ultra Compact Combustor Flow Path Splits;53rd AIAA Aerospace Sciences Meeting;2015-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3