A New Spin on Small-Scale Combustor Geometry

Author:

Bohan Brian T.1,Polanka Marc D.1

Affiliation:

1. Air Force Institute of Technology, Wright-Patterson AFB, OH 45433 e-mail:

Abstract

The ultra-compact combustor (UCC) is an innovative combustor system alternative to traditional turbine engine combustors with the potential for engine efficiency improvements with a reduced volume. Historically, the UCC cavity had been configured such that highly centrifugally loaded combustion took place in a recessed circumferential cavity positioned around the outside diameter (OD) of the engine. One of the obstacles with this design was that the combustion products had to migrate radially across the span of a vane while being pushed downstream by a central core flow. This configuration proved difficult to produce a uniform temperature distribution at the first turbine rotor. The present study has taken a different spin on the implementation of circumferential combustion. Namely, it aims to combine the combustion and space saving benefits of the highly centrifugally loaded combustion of the UCC in a new combustor orientation that places the combustor axially upstream of the turbine versus radially outboard. An iterative design approach was used to computationally analyze this new geometry configuration with the goal of fitting within the casing of a JetCat P90RXi. This investigation revealed techniques for implementation of this concept including small-scale combustor centrifugal air loading development, maintaining combustor circumferential swirl, combustion stability, and fuel distribution are reported. The final combustor configuration was manufactured and experimentally tested, validating the computational results. Furthermore, dramatic improvements in the uniformity of the turbine inlet temperature profiles are revealed over historical UCC concepts.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3