Effect of GTL-Like Jet Fuel Composition on GT Engine Altitude Ignition Performance: Part I—Combustor Operability

Author:

Fyffe Darren1,Moran John1,Kannaiyan Kumaran2,Sadr Reza2,Al-Sharshani Ali3

Affiliation:

1. Rolls-Royce plc, Derby, UK

2. Texas A&M University at Qatar, Doha, Qatar

3. Qatar Shell Research and Technology Centre, Doha, Qatar

Abstract

The current fuel used in aviation turbines is kerosene, and is tightly controlled to a well defined specification. The past 50 years of simultaneous development between the aviation turbine and kerosene jet fuel has led to the fuel specification. The design of the combustion system has also been developed with this fuel chemistry and specification. In the past 5 years, there has been a ground swell of interest in alternative fuels for aviation, where the fuels can be made from a variety of feedstocks and processes. The chemistry and composition of species within future alternative fuels will change from the current kerosene jet fuel specifications; therefore research has been carried out looking at the effects of some of the fundamental component species that will be found in potential future fuels. The gas turbine combustion ignition and stability characteristics were studied while fuelled by a series of gas-to-liquid (GTL) Synthetic Paraffinic Kerosene (SPK)-type fuels by measurement of the successful ignition and flame stability regimes at realistic altitude temperatures and pressures. The combustor under test was a multi-sector representation of an advanced gas turbine combustor and fuel injector. Tests were conducted on the Rolls-Royce plc TRL3 (Technology Readiness Level) sub-atmospheric altitude ignition facility in Derby, UK. The facility was operated at simulated altitude conditions of 6 and 8 psi combustor inlet pressure with corresponding air and fuel temperatures to represent combustor conditions following flame-out during high altitude cruise. The GTL SPK-type fuels were selected to generate a pseudo-Design of Experiments (DoE) matrix in which the iso- to normal-paraffin ratio, cyclic paraffin content, and carbon number range were varied to isolate the effects of each. Tests were conducted at combinations of air mass flow rate and fuel-air ratio necessary to map the regimes of successful ignition and flame stability. All fuels indicated little or no deterioration to the weak boundary of the ignition regime, nor the weak extinction limits, within the scatter of the experimental method. Evidence was found that a commercial GTL SPK, as well as one of the DoE blends, may have greater ignition performance at simulated altitude conditions. Further testing at higher TRL levels is recommended to confirm this finding. The test programme was supported by DLR, German Aerospace Centre, through high-speed diagnostic imaging of the ignition process, including OH* and CH* chemi-luminescence measurements, which is the subject of a separate complementary paper.

Publisher

ASMEDC

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3