An Investigation of a Residential Solar System Coupled to a Radiant Panel Ceiling

Author:

Zhang Z.1,Pate M.1,Nelson R.1

Affiliation:

1. Mechanical Engineering Department, Iowa State University, Ames, Iowa 50011

Abstract

An experimental study of a solar-radiant heating system was performed at Iowa State University’s Energy Research House (ERH). The ERH was constructed with copper tubes embedded in the plaster ceilings, thus providing a unqiue radiant heating system. In addition, 24 water-glycol, flat-plate solar collectors were mounted on the south side of the residence. The present study uses the solar collectors to heat a storage tank via a submerged copper tube coil. Hot water from the storage tank is then circulated through a heat exchanger, which heats the water flowing through the radiant ceiling. This paper contains a description of the solar-radiant system and an interpretation of the data that were measured during a series of transient experiments. In addition, the performance of the flat-plate solar collectors and the water storage tank were evaluated. The characteristics of a solar-to-radiant heat exchanger were also investigated. The thermal behavior of the radiant ceiling and the room enclosures were observed, and the heat transfer from the ceiling by radiation and convection was estimated. The overall heating system was also evaluated using the thermal performances of the individual components. The results of this study verify that it is feasible to use a solar system coupled to a low-temperature radiant-panel heating system for space heating. A sample performance evaluation is also presented.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3