Experimental Study on the Influence of Solar Heat Gain on the Thermal Performance of Hollow Ventilated Interior Wall

Author:

Zhou Jiri12,Yu Tao3,Lei Bo3

Affiliation:

1. School of Mechanical Engineering, Southwest Jiaotong University, No. 111, North Section 1, Second Ring Road, Chengdu, Sichuan 610031, China;

2. China MCC5 Group Corp. Ltd., MCC5 Tower, No. 9, Wuye Road, Chengdu, Sichuan 610063, China

3. School of Mechanical Engineering, Southwest Jiaotong University, No. 111, North Section 1, Second Ring Road, Chengdu, Sichuan 610031, China

Abstract

Abstract The heating system combining solar air collector with hollow ventilated interior wall (SAC-HVIW) can effectively extend the heating time. However, due to the large wall-window ratio of buildings on Tibetan Plateau, the strong solar radiation irradiating on the interior wall may influence the thermal performance of HVIW. In this paper, an experimental room is constructed to study the influence of external solar heat gain on the thermal performance of HVIW. Steady-state measurements are carried out by considering different ventilation rates, supply air temperatures and heat gains. Results show that the external heat gain has almost no effect on U-value, but it increases the heating capacity by increasing the logarithmic mean temperature difference (LMTD). For all cases, the heating capacity of HVIW is related to LMTD and supply air velocity, and U-value mainly increases with supply air velocity. Heat transfer of the interior surface of HVIW is dominated by forced convection which increases linearly with supply air velocity. The radiant heat transfer coefficient of the exterior surface of HVIW is not affected by the external heat gain with the mean value of 5.65 W/(m2 · K), while the convective heat transfer coefficient increases logarithmically with the external heat gain. The proportion of radiant heat transfer decreases as a power function with the increase of the exterior surface temperature. Measurements in this paper are used to evaluate the influence of external heat gain on the heating performance of HVIW, which is beneficial to the design of HVIW.

Funder

Basic Research Programs of Sichuan Province

National Natural Science Foundation of China

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3