The Effect of Ignition Procedure on Flashback of Hydrogen-Enriched Flames

Author:

Yahou Tarik12,Schuller Thierry3,Dawson James R.4

Affiliation:

1. Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim N-7034, Norway ; , CNRS, Toulouse 31400, France

2. Institut de Mécanique des Fluides de Toulouse, Université de Toulouse Trondheim N-7034, Norway ; , CNRS, Toulouse 31400, France

3. Institut de Mécanique des Fluides de Toulouse, IMFT, Université de Toulouse , CNRS, Toulouse 31400, France

4. Department of Energy and Process Engineering, Norwegian University of Science and Technology , Trondheim N-7034, Norway

Abstract

Abstract The impact of different ignition sequences on the ignition dynamics of CH4-H2 flames in a bluff body burner is investigated at atmospheric conditions. Experiments are performed over a wide range of operating conditions covering pure methane injection (PH0) to pure hydrogen injection (PH100). A perforated plate of total porosity σ=0.17 is positioned at the outlet of the combustion chamber to increase the chamber back pressure and trigger transient flashback during ignition. Time-series of pressure, OH* chemiluminescence and OH-PLIF images of the propagating flame branch are recorded simultaneously to characterize the ignition process. Two ignition procedures are investigated. For ignition procedure A, designated as an early ignition procedure, the spark is initiated before fuel injection. For ignition procedure B, designated as a late ignition, the spark is only activated after the fuel injection. The impact of the fuel air mixing on the final stabilization state is investigated by changing the fuel delivery time (dt) before the initial spark. Three different time delays are considered dt = 1, 3, and 5 s. The final state of the flame is found to be highly sensitive to the selected ignition procedure and increasing dt favors the occurrence of flashback. At constant power, the magnitude of the pressure peak is driven by a competition between the fuel mass flowrate at the moment of ignition and the high reactivity of hydrogen, which shifts the flammability limit toward lower equivalence ratios, hence generating a lower reaction rate. For procedure A, the peak of the chamber over pressure shows a nonmonotonic growth for increasing levels of H2 in the fuel blend, while it linearly increases for procedure B. Experiments are then conducted at a fixed injection flow velocity Ub = 5 m s–1 and fixed laminar burning velocity Sl0=0.25 m s–1 by varying the level of hydrogen enrichment. For procedure A, the over pressure amplitude decreases with increasing the hydrogen enrichment leading to a soft ignition for all CH4-H2 blends. Under ignition procedure B, the amplitude of the over pressure reached during ignition is found to be relatively unaffected by the hydrogen concentration, but the flame stabilization mode shows a strong dependence to both the level of H2-enrichment and fuel delivery time dt. OH* as well as OH-PLIF images reveal that the trajectory of the flame leading point changes as dt increases. The different dynamics of the flame leading points is likely to be the cause the different types of stabilization modes observed.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3