Toward Decarbonized Power Generation With Gas Turbines by Using Sequential Combustion for Burning Hydrogen

Author:

Bothien Mirko R.1,Ciani Andrea1,Wood John P.1,Fruechtel Gerhard1

Affiliation:

1. Ansaldo Energia Switzerland, Haselstrasse 18, Baden 5400, Switzerland

Abstract

Abstract Excess energy generation from renewables can be conveniently stored as hydrogen for later use as a gas turbine fuel. Also, the strategy to sequestrate CO2 from natural gas (NG) will require gas turbines to run with hydrogen-based fuels. In such scenarios, high temperature low emission combustion of hydrogen is a key requirement for the future gas turbine market. Ansaldo Energia's gas turbines featuring sequential combustion have an intrinsic advantage when it comes to fuel flexibility and in particular hydrogen-based fuels. The sequential combustion system is composed of two complementary combustion stages in series: one premix stage followed by an auto-ignited second stage overcoming the limits of traditional premix combustion systems through a highly effective extra tuning parameter, i.e., the temperature between the first and the second stage. The standard constant pressure sequential combustion (CPSC) system as applied in the GT36 engine is tested, at high pressure, demonstrating that a modified operation concept allows stable combustion with no changes in combustor hardware for the whole range of NG and hydrogen blends. It is shown that in the range from 0% to 70% (vol.) hydrogen, stable combustion is achieved at full nominal exit temperature, i.e., without any derating and thus clearly outperforming other available conventional premixed combustors. Operation between 70% and 100% is possible as well and only requires a mild reduction of the combustor exit temperature. By proving the transferability of the single-can high pressure results to the engine, this paper demonstrates the practicality of operating the Ansaldo Energia GT36 H-Class gas turbine on fuels containing unprecedented concentrations of hydrogen while maintaining excellent performance and low emissions both in terms of NOx and CO2.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3