Heat Rate Predictions in Humid Air-Water Heat Exchangers Using Correlations and Neural Networks

Author:

Pacheco-Vega Arturo1,Dı´az Gerardo1,Sen Mihir1,Yang K. T.1,McClain Rodney L.1

Affiliation:

1. Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556

Abstract

We consider the flow of humid air over fin-tube multi-row multi-column compact heat exchangers with possible condensation. Previously published experimental data are used to show that a regression analysis for the best-fit correlation of a prescribed form does not provide an unique answer, and that there are small but significant differences between the predictions of the different correlations thus obtained. It is also shown that it is more accurate to predict the heat rate directly rather than through intermediate quantities like the j-factors. The artificial neural network technique is offered as an alternative technique. It is trained with experimental values of the humid-air flow rates, dry-bulb and wet-bulb inlet temperatures, fin spacing, and heat transfer rates. The trained network is then used to make predictions of the heat transfer. Comparison of the results demonstrates that the neural network is more accurate than conventional correlations.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3