Optimisation of design parameters of the finned tube heat exchanger by numerical simulations and artificial neural networks for the condensing wall hang boilers

Author:

AVCI Hasan1ORCID,KUMLUTAŞ Dilek1ORCID,ÖZER ÖzgünORCID,YÜCEKAYA Utku Alp1ORCID

Affiliation:

1. DOKUZ EYLÜL ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ

Abstract

This research investigates the use of computational fluid dynamics (CFD) and artificial neural networks (ANNs) to optimise the design of finned tube heat exchangers for use in condensing wall-mounted boilers (WHBcs). Fin height, thickness, and distance are selected as the input design parameters, and the internal volume of the heat engine is modelled using the CFDHT (CFD and heat transfer) method. Different ANN structures are trained and tested on the resulting data to identify the optimal training process. The trained ANN is then used to predict various output parameters, including total heat transfer on the inner surface of the tube, maximum temperature on the fins, total heat transfer per unit volume of the heat exchanger, and pressure drop between the inlet and outlet of the internal volume. The optimal design scenarios are evaluated based on design criteria, and the ANN is found to have good statistical performance, with an average accuracy of 1.00018 and a maximum relative error of 9.16%. The ANN is able to accurately estimate the optimal design case.

Funder

The Scientific and Technological Research Council of Turkey

Publisher

European Mechanical Science

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3