The Effect of Initial Injection Conditions on the Oil Droplet Motion in a Simplified Bearing Chamber

Author:

Farrall M.1,Hibberd S.1,Simmons K.1

Affiliation:

1. University Technology Centre in Transmission Systems, School of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom

Abstract

Increasing demands on aeroengines to operate at higher shaft speeds and temperatures require an understanding and optimization of the integral systems. The ability to model movement of oil around bearing chambers in the form of droplets and films is a current area of interest. This paper presents a two-phase numerical modeling approach developed for predicting air, oil droplet, and oil film behavior within an aeroengine bearing chamber including the significant droplet/film interactions. In-house code is linked to the commercial CFD package CFX4.3 and a predictive algorithm for determining the outcome of droplet impact with a wall film and the associated transfer of oil mass and momentum is developed. The method is used to simulate the motion of oil droplets shed from a roller bearing in a simplified aeroengine bearing chamber geometry and through a parametric study shows that initial droplet size distribution parameters (mean diameter and spread) have a significant effect on oil deposition location. In contrast, the Sauter mean diameter of droplets within the chamber showed little sensitivity to initial injection parameters. The behavior of oil within a bearing chamber is strongly influenced by the conditions with which it leaves the bearing. There is potential for performance improvement if bearing shed can be controlled or if chamber design can be modified such that oil behavior is insensitive to initial shed conditions.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3