A Review of Computational Fluid Dynamics Approaches Used to Investigate Lubrication of Rolling Element Bearings

Author:

Sadeghi Farshid1,Arya Ujjawal2,Aamer Saeed32,Meinel Andreas4

Affiliation:

1. Purdue University Cummins Distinguished Professor of Mechanical Engineering School of Mechanical Engineering, , West Lafayette, IN 47907

2. Purdue University School of Mechanical Engineering, , West Lafayette, IN 47907

3. Purdue University West Lafayette School of Mechanical Engineering, , West Lafayette, IN 47907

4. Schaeffler Technologies AG & Co. KG R&D Analysis Methods Fundamentals, , Herzogenaurach 91074 , Germany

Abstract

Abstract Optimizing bearing performance is based on effective lubrication, especially in high-speed machinery, where minimizing churning and drag losses is of significant importance. Over the past few decades, extensive research has been conducted into the better understanding of different aspects of bearing lubrication. These investigations have employed a combination of experimental methods and advanced computational fluid dynamics (CFD) models. This article provides a comprehensive overview of critical aspects of bearing lubrication, with a specific emphasis on recent advances in CFD models. Lubricant flow and distribution patterns are discussed while examining their impact on drag and churning losses. An extensive discussion is provided on the meshing strategies and modeling approaches used to simulate various flow phenomena within bearings. In addition, relevant trends and impacts of cage design on bearing lubrication and fluid friction have been explored, along with a discussion of prevailing limitations that can be addressed in future bearing CFD models.

Publisher

ASME International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3