Experimental and Numerical Investigation of Annular Casing Impingement Arrays for Faster Casing Response

Author:

Dann Andrew1,Dhopade Priyanka2,Bacic Marko2,Ireland Peter2,Lewis Leo3

Affiliation:

1. Osney Thermo-Fluids Laboratory, Department of Engineering Science, University of Oxford, Oxford OX2 0ES, Oxfordshire, UK e-mail:

2. Osney Thermo-Fluids Laboratory, Department of Engineering Science, University of Oxford, Oxford OX2 0ES, Oxfordshire, UK

3. Structural Systems Design, Rolls-Royce plc, Derby DE24 8BJ, UK e-mail:

Abstract

The transient heat transfer facility (THTF) was developed to test full-scale high pressure compressor and turbine casing air systems using gas turbine engine representative secondary air system conditions. Transient casing response together with blade and disk responses governs achievable tip clearances in both compressors and turbines. This paper investigates the use of air impingement as a means to speed up the casing response. The thermal growth of the casing was characterized by surface temperature rise over a given period to assess achievable dynamic response. The experimental setup resembles a typical aircraft engine with features that can lead to circumferential temperature nonuniformities, as evident from the experimental results. The experimental data were compared against numerical predictions from a conjugate heat transfer (CHT) model. The studies show the significance of analyzing the full annulus, at engine representative conditions and the benefit of an impingement array to potentially speed up casing response for future engines.

Funder

Rolls-Royce

Innovate UK

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3