Author:
Smith E.O.,Neely A.J.,Palfrey-Sneddon H.
Abstract
ABSTRACTWhen a gas turbine engine is shut down it will develop a circumferential thermal gradient vertically across the compressor due to hot air rising from the cooling metal components and pooling at the top. As the hot compressor rotor drum and casing cool and contract in the presence of this thermal gradient, they do so non-uniformly and therefore will bend slightly, in a phenomenon known as rotor bow. Starting an engine under bowed conditions can result in damage, representing a risk to both airworthiness and operational capability. This study consolidates some preliminary findings by the authors relating to the drivers for rotor bow, such as engine geometry, aircraft-engine integration and rotor temperature on shutdown. The commercial and military operational considerations associated with rotor bow are also discussed, including limitations which may result from a bowed rotor; the influence of operations including the final flight and descent profiles, taxi procedures and rapid turnaround requirements; as well as some practical solutions which may be implemented to reduce the impact of rotor bow.
Publisher
Cambridge University Press (CUP)
Reference59 articles.
1. Bombardier Global 5000 BR710-20 power plant manual, Operator Manual, 2005.
2. Accuracy in the identification of a generator thermal bow
3. Pratt & Whitney, ‘Operating Instructions for the PW4000 Series Commercial Turbofan Engines in the A300-600 and A310 Airplanes, Operator Manual, 2008.
4. Marinescu G. , Stein P. and Sell M. Experimental investigation into thermal behavior of steamturbine components: Part 4 natural cooling and robustness of the over-conductivity function, ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, no. GT2014-25247, 16-20 June 2014, American Society of Mechanical Engineers.
5. Marinescu G. , Sell M. , Ehrsam A. and Brunner P.B. Experimental investigation into thermal behavior of steam turbine components: Part 3 – startup and the impact on LCF life, ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, no. GT2013-94356, 3-7 June 2013, American Society of Mechanical Engineers, San Antonio, Texas, US.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献