Heat Transfer During Evaporation on Capillary-Grooved Structures of Heat Pipes

Author:

Khrustalev D.1,Faghri A.1

Affiliation:

1. Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269

Abstract

A detailed mathematical model is developed that describes heat transfer through thin liquid films in the evaporator of heat pipes with capillary grooves. The model accounts for the effects of interfacial thermal resistance, disjoining pressure, and surface roughness for a given meniscus contact angle. The free surface temperature of the liquid film is determined using the extended Kelvin equation and the expression for interfacial resistance given by the kinetic theory. The numerical results obtained are compared to existing experimental data. The importance of the surface roughness and interfacial thermal resistance in predicting the heat transfer coefficient in the grooved evaporator is demonstrated.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference17 articles.

1. Carey, V. P., 1992, Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, Hemisphere, New York.

2. Derjaguin B. V. , 1955, “Definition of the Concept of and Magnitude of the Disjoining Pressure and Its Role in the Statics and Kinetics of Thin Layers of Liquid,” Kolloidny Zhurnal, Vol. 17, pp. 191–197 [in Russian].

3. Faghri, A., 1995, Heat Pipe Science and Technology, Taylor & Francis, New York.

4. Holm F. W. , and GoplenS. P., 1979, “Heat Transfer in the Meniscus Thin-Film Transition Region,” ASME JOURNAL OF HEAT TRANSFER, Vol. 101, pp. 543–547.

5. Ivanovskii M. N. , PrivezentsevV. V., Il’inYu. A., and SidorenkoE. M., 1984, “Experimental Investigation of Heat Transfer With Evaporation of the Agent From a Corrugated Capillary Structure,” J. Engineering Physics and Thermophysics, Vol. 46, No. 4, 377–381.

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3