Machine Learning for Modeling Oscillating Heat Pipes: A Review

Author:

Núñez Roberto1,Mohammadian Shahabeddin K.1,Rupam Tahmid Hasan1,Mohammed Ramy H.1,Huang Guliang1,Ma Hongbin1

Affiliation:

1. University of Missouri Department of Mechanical and Aerospace Engineering, , Columbia, MO 65211

Abstract

Abstract Oscillating heat pipes are heat transfer devices with the potential of addressing some of the most pressing current thermal management problems, from the miniaturization of microchips to the development of hypersonic vehicles. Since their invention in the 1990s, numerous studies have attempted to develop predictive and inverse design models for oscillating heat pipe function. However, the field still lacks robust and flexible models that can be used to prescribe design specifications based on a target performance. The fundamental difficulty lies in the fact that, despite the simplicity of their design, the mechanisms behind the operation of oscillating heat pipes are complex and only partially understood. To circumvent this limitation, over the last several years, there has been increasing interest in the application of machine learning techniques to oscillating heat pipe modeling. Our survey of the literature has revealed that machine learning techniques have successfully been used to predict different aspects of the operation of these devices. However, many fundamental questions such as which machine learning models are better suited for this task or whether their results can extrapolate to different experimental setups remain unanswered. Moreover, the wealth of knowledge that the field has produced regarding the physical phenomena behind oscillating heat pipes is still to be leveraged by machine learning techniques. Herein, we discuss these applications in detail, emphasizing their advantages, limitations, as well as potential paths forward.

Funder

Office of Naval Research

Publisher

ASME International

Reference94 articles.

1. Oscillating Heat Pipes

2. Akachi, H. , 1993, “Structure of Micro-Heat Pipe,” US Patent No. 5,219,020.

3. Akachi, H. , 1990, “Structure of a Heat Pipe,” US Patent No. 4921041.

4. Innovations in Pulsating Heat Pipes: From Origins to Future Perspectives;Mameli;Appl. Therm. Eng.,2022

5. Nonlinear Thermomechanical Finite-Element Modeling, Analysis and Dynamics Characterization of Oscillating Heat Pipes;Peng;Int. J. Heat Mass Transfer,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3