On Instability Pockets and Influence of Damping in Parametrically Excited Systems

Author:

Sharma Ashu1,Sinha S. C.2

Affiliation:

1. Department of Mechanical Engineering, Auburn University, Auburn, AL 36849 e-mail:

2. Life Fellow ASME Department of Mechanical Engineering, Auburn University, Auburn, AL 36849 e-mail:

Abstract

In most parametrically excited systems, stability boundaries cross each other at several points to form closed unstable subregions commonly known as “instability pockets.” The first aspect of this study explores some general characteristics of these instability pockets and their structural modifications in the parametric space as damping is induced in the system. Second, the possible destabilization of undamped systems due to addition of damping in parametrically excited systems has been investigated. The study is restricted to single degree-of-freedom systems that can be modeled by Hill and quasi-periodic (QP) Hill equations. Three typical cases of Hill equation, e.g., Mathieu, Meissner, and three-frequency Hill equations, are analyzed. State transition matrices of these equations are computed symbolically/analytically over a wide range of system parameters and instability pockets are observed in the stability diagrams of Meissner, three-frequency Hill, and QP Hill equations. Locations of the intersections of stability boundaries (commonly known as coexistence points) are determined using the property that two linearly independent solutions coexist at these intersections. For Meissner equation, with a square wave coefficient, analytical expressions are constructed to compute the number and locations of the instability pockets. In the second part of the study, the symbolic/analytic forms of state transition matrices are used to compute the minimum values of damping coefficients required for instability pockets to vanish from the parametric space. The phenomenon of destabilization due to damping, previously observed in systems with two degrees-of-freedom or higher, is also demonstrated in systems with one degree-of-freedom.

Publisher

ASME International

Subject

General Engineering

Reference27 articles.

1. Mémoire Sur Le Mouvement Vibratoire D'une Membrane De Forme Elliptique;J. Math. Pures Appl.,1868

2. On the Part of the Motion of the Lunar Perigee Which is a Function of the Mean Motions of the Sun and Moon;Acta Math.,1886

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3