Approximate Floquet Analysis of Parametrically Excited Multi-Degree-of-Freedom Systems With Application to Wind Turbines

Author:

Acar Gizem D.1,Feeny Brian F.2

Affiliation:

1. Dynamics and Control Laboratory, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 e-mail:

2. Professor Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824 e-mail:

Abstract

General responses of multi-degrees-of-freedom (MDOF) systems with parametric stiffness are studied. A Floquet-type solution, which is a product between an exponential part and a periodic part, is assumed, and applying harmonic balance, an eigenvalue problem is found. Solving the eigenvalue problem, frequency content of the solution and response to arbitrary initial conditions are determined. Using the eigenvalues and the eigenvectors, the system response is written in terms of “Floquet modes,” which are nonsynchronous, contrary to linear modes. Studying the eigenvalues (i.e., characteristic exponents), stability of the solution is investigated. The approach is applied to MDOF systems, including an example of a three-blade wind turbine, where the equations of motion have parametric stiffness terms due to gravity. The analytical solutions are also compared to numerical simulations for verification.

Funder

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

ASME International

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3