Cavitation Bubble Dynamics Induced by Hydrodynamic Pressure Oil Film in Ultrasonic Vibration Honing

Author:

Guo Ce12,Zhu XiJing2,Liu Jia3,Zhang Dan4

Affiliation:

1. Shanxi Key Laboratory of Precision Machining, Taiyuan University of Technology, Taiyuan 030024, China;

2. Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China

3. Shanxi Key Laboratory of Precision Machining, Taiyuan University of Technology, Taiyuan 030024, China

4. The Second Research Institute of China Electronics Technology Group Corporation, Taiyuan 030024, China

Abstract

During ultrasonic vibration honing (UVH), a thin hydrodynamic oil film formed can seriously affect the cavitation effect in the grinding fluid, but the mechanism is still unclear now. Based on the hydrodynamics theory, a revised cavitation bubble model with oil film pressure is developed, and it has been calculated by the four-order Runge–Kutta method. The calculation results show that the oil film pressure under UVH is a positive–negative alternant pulse pressure, and it can induce the secondary expansion of the bubble, leading to double microjets during the process of the bubble collapsing. The effects of ultrasonic amplitude, ultrasonic frequency, oil film height, and reciprocation speed of the honing stone on the bubble dynamics are discussed. With the increase of ultrasonic amplitude, the amplitude of the bubble expansion is increased, and the oscillation interval is extended. As increasing normalized oil film height, the variation of the bubble first expansion is slight, while the amplitude of the bubble secondary expansion is reduced and the oscillation interval is also shortened. The main effect of ultrasonic frequency and reciprocation speed of the honing stone on the bubble dynamics is connected with the secondary bubble expansion. The bubble secondary expansion is decreased with the increasing reciprocation speed of the honing stone, ultrasonic frequency, and oil film height. The results of the simulations are consistent with the surface roughness measurements well, which provides a theoretical prediction method of cavitation bubbles control.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3