Study on Lubricating Performance of the Bubbly Oil Under High Shear Rate—Part 2: Application Study in High-Speed Bearing

Author:

Jiang Shuyun1,Li Shaohua1,Zhou Feida1,Lin Xiaohui1

Affiliation:

1. Southeast University School of Mechanical Engineering, , 2 Southeast Road, Jiangning District, Nanjing 211189 , China

Abstract

Abstract This paper aims to investigate the lubricating performance of the bubbly oil. Due to space limitation, the work is divided into two parts. Part 1 concluded that the bubbly oil under high shear rate has a lower viscosity than the non-aerated oil, and the air volume fraction can be adjusted conveniently to reach a high value. Based on this, in Part 2, we intend to explore the feasibility of using the bubbly oil in lubricating high-speed bearings. Here, we select a step thrust bearing as object and analyze its static characteristics under the bubbly oil lubrication. A test rig for the high-speed step thrust bearing was developed to measure the static characteristics of the bearing under the bubbly oil lubrication. The lubrication models for the hydrodynamic step thrust bearing were established to predict the bearing static characteristics. The results show that the static characteristics parameters of the bearing under the bubbly oil lubrication are less than those under the non-aerated oil lubrication, and the differences of static characteristics parameters of the bearing between the non-aerated oil lubrication and the bubbly oil one become larger with the increase of air volume fraction and the external load, especially at a higher speed.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3