A Hybrid Physical-Dynamic Tire/Road Friction Model

Author:

Li Jingliang1,Zhang Yizhai1,Yi Jingang2

Affiliation:

1. e-mail:

2. e-mail:  Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, NJ 08854

Abstract

We present a hybrid physical-dynamic tire/road friction model for applications of vehicle motion simulation and control. We extend the LuGre dynamic friction model by considering the physical model-based adhesion/sliding partition of the tire/road contact patch. Comparison and model parameters relationship are presented between the physical and the LuGre dynamic friction models. We show that the LuGre dynamic friction model predicts the nonlinear and normal load-dependent rubber deformation and stress distributions on the contact patch. We also present the physical interpretation of the LuGre model parameters and their relationship with the physical model parameters. The analysis of the new hybrid model's properties resolves unrealistic nonzero bristle deformation and stress at the trailing edge of the contact patch that is predicted by the existing LuGre tire/road friction models. We further demonstrate the use of the hybrid model to simulate and study an aggressive pendulum-turn vehicle maneuver. The CARSIM simulation results by using the new hybrid friction model show high agreements with experiments that are performed by a professional racing car driver.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference28 articles.

1. Tire-Road Friction-Coefficient Estimation;IEEE Control Syst. Mag.,2010

2. Elements of a Mechatronic Vehicle Corner;Mechatronics,2002

3. Estimation of the Maximum Tire-Road Friction Coefficient;ASME J. Dyn. Syst., Meas., Control,2003

4. A Piezo-Sensor Based “Smart Tire” System for Mobile Robots and Vehicles;IEEE/ASME Trans. Mechatron.,2008

5. Tyre Modelling for Use in Vehicle Dynamics Studies,1987

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3