Heat Transfer to an Actively Cooled Shroud With Blade Rotation

Author:

Tamunobere Onieluan1,Drewes Christopher1,Acharya Sumanta23,Nakamata Chiyuki4

Affiliation:

1. Turbine Innovation and Energy Research (TIER) Center, Mechanical Engineering Department, Louisiana State University, Baton Rouge, LA 70803 e-mail:

2. Turbine Innovation and Energy Research (TIER) Center, Mechanical Engineering Department, Louisiana State University, Baton Rouge, LA 70803;

3. Mechanical Engineering Department, University of Memphis, Memphis, TN 38152 e-mail:

4. Aero-Engine & Space Operations, IHI Corporation, Tokyo 190-1297, Japan

Abstract

An experimental study of the shroud heat transfer behavior and the effectiveness of shroud cooling are undertaken in a single-stage turbine at low rotation speeds. The shroud consists of a periodic distribution of laterally oriented cooling holes that are angled at 45 deg to the shroud surface in a repeating circumferential pattern and has five unique hole pitches in the axial direction. Measurements of the normalized Nusselt number and film cooling effectiveness are done using liquid crystal thermography. These measurements are reported for the no-coolant case and nominal blowing ratios (BRs) of 1.0, 1.5, 2.0, 2.5, and 3.0. The tests are performed at an inflow Reynolds number of 17,500 corresponding to a scaled down design rotation speed of 550 rpm, and two off-design speeds imposed by a motor: (1) a rotation speed below the design speed (400 rpm) and (2) a rotation speed above the design speed (700 rpm). The results at the design speed show that increasing the BR increases the area-averaged film cooling effectiveness, while the Nu/Nu0 in the shroud hole region decreases. As the rotor speed is changed from the design speed, the high Nu/Nu0 region migrates on the shroud surface. This migration affects the coolant coverage in the shroud hole region resulting in increased coolant coverage at below-design rotation speeds and decreased coolant coverage at above-design rotation speeds. At all rotation speeds, as the BR increases, the area-averaged film cooling effectiveness in the shroud hole region increases. Decreasing the circumferential shroud coolant hole spacing changes the lateral heat transfer profile from a periodic sinusoidal distribution for a shroud hole spacing of P/D = 10.4 to a more even distribution for a smaller shroud hole spacing (P/D = 4.8).

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3