Fuel Cell Temperature Control With a Precombustor in SOFC Gas Turbine Hybrids During Load Changes

Author:

Zaccaria Valentina1,Branum Zachary2,Tucker David1

Affiliation:

1. National Energy Technology Laboratory, U.S. Department of Energy, 3610 Collins Ferry Road, Morgantown, WV 26507 e-mail:

2. The School of Engineering of Matter, Transport, and Energy, Arizona State University, University Drive, Tempe, AZ 85281 e-mail:

Abstract

The use of high temperature fuel cells, such as solid oxide fuel cells (SOFCs), for power generation is considered a very efficient and clean solution for conservation of energy resources. When the SOFC is coupled with a gas turbine, the global system efficiency can go beyond 70% on natural gas lower heating value (LHV). However, durability of the ceramic material and system operability can be significantly penalized by thermal stresses due to temperature fluctuations and noneven temperature distributions. Thermal management of the cell during load following is therefore essential. The purpose of this work is to develop and test a precombustor model for real-time applications in hardware-based simulations, and to implement a control strategy to keep constant cathode inlet temperature during different operative conditions. The real-time model of the precombustor was incorporated into the existing SOFC model and tested in a hybrid system facility, where a physical gas turbine and hardware components were coupled with a cyber-physical fuel cell for flexible, accurate, and cost-reduced simulations. The control of the fuel flow to the precombustor was proven to be effective in maintaining a constant cathode inlet temperature during a step change in fuel cell load. With a 20 A load variation, the maximum temperature deviation from the nominal value was below 0.3% (3 K). Temperature gradients along the cell were maintained below 10 K/cm. An efficiency analysis was performed in order to evaluate the impact of the precombustor on the overall system efficiency.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3