Parametric Thermodynamic Analysis of a Solid Oxide Fuel Cell Gas Turbine System Design Space

Author:

Tarroja Brian1,Mueller Fabian1,Maclay Jim1,Brouwer Jacob1

Affiliation:

1. National Fuel Cell Research Center, University of California, Irvine, CA 92697-3550

Abstract

A parametric study of a solid oxide fuel cell-gas turbine (SOFC-GT) hybrid system design is conducted with the intention of determining the thermodynamically based design space constrained by modern material and operating limits. The analysis is performed using a thermodynamic model of a generalized SOFC-GT system where the sizing of all components, except the fuel cell, is allowed to vary. Effects of parameters such as pressure ratio, fuel utilization, oxygen utilization, and current density are examined. Operational limits are discussed in terms of maximum combustor exit temperature, maximum heat exchanger effectiveness, limiting current density, maximum hydrogen utilization, and fuel cell temperature rise. It was found that the maximum hydrogen utilization and combustor exit temperature were the most significant constraints on the system design space. The design space includes the use of cathode flow recycling and air preheating via a recuperator (heat exchanger). The effect on system efficiency of exhaust gas recirculation using an ejector versus using a blower is discussed, while both are compared with the base case of using a heat exchanger only. It was found that use of an ejector for exhaust gas recirculation caused the highest efficiency loss, and the base case was found to exhibit the highest overall system efficiency. The use of a cathode recycle blower allowed the largest downsizing of the heat exchanger, although avoiding cathode recycling altogether achieved the highest efficiency. Efficiencies in the range of 50–75% were found for variations in pressure ratio, fuel utilization, oxygen utilization, and current density. The best performing systems that fell within all design constraints were those that used a heat exchanger only to preheat air, moderate pressure ratios, low oxygen utilizations, and high fuel utilizations.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3