Heat Transfer and Pressure Drop Characteristics of an Assembly of Partially Segmented Plates

Author:

Lee Y. N.1

Affiliation:

1. Borg-Warner Research Center, Des Plaines, IL 60018

Abstract

The heat transfer and pressure drop characteristics of an assembly of plates in a rectangular duct, with part of each plate segmented transversely and the segments inclined at 25 deg to the flow, have been investigated experimentally in the range of Reynolds numbers between 900 and 4000. The segmented-to-total width ratios β were 0.81 and 0.61. Mass transfer measurements of naphthalene were made to obtain the heat transfer coefficient. A new spray technique is described for preparing the mass transfer models, which are so complex that previously reported techniques cannot be applied. The mass transfer models simulate louvered fin surfaces used currently in industries. The heat transfer coefficient is found to be a strong function of the segmented-to-total plate width ratio β, and it decreases as β decreases. The heat transfer coefficient of an existing louver fin heat exchanger whose geometries are in close proximity to one of the model configurations was compared with that of the model, and good agreement was obtained between the two. The pressure drop (through the plate assembly) measurements showed that the pressure drop is mainly due to inertia loss in the experimental range of the present work, and that the streamwise, per-row pressure drop coefficient Kp is a function of only β and independent of the Reynolds number NRe,Dh. It was found, for a fixed blower power, that there exists an optimum Reynolds number (NRe,Dh)opt for maximum Nusselt number at a given segmented-to-total width radio β. A similar trend is also found for a fixed pressure drop.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3