Flow and Dipole Source Evaluation of a Generic SUV

Author:

Ask Jonas1,Davidson Lars2

Affiliation:

1. Department of Environment and Fluid Dynamics Centre, Volvo Car Corporation, SE-405 31 Göteborg, Sweden

2. Department of Applied Mechanics, Division of Fluid Dynamics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

Abstract

Accurately predicting both average flow quantities and acoustic sources at the front window of today’s ground vehicles are still a considerable challenge to automotive companies worldwide. One of the most important aspects in terms of obtaining not only trustworthy results but also the most tedious one and therefore perhaps overlooked, is the control and outcome of the mesh generation process. Generating unstructured volume meshes suitable for large eddy simulations with high level representation of geometrical details is both a time consuming and an extremely computer demanding activity. This work investigates two different mesh generation processes with its main aim to evaluate their outcome with respect to the prediction of the two dominating dipole sources in a temporal form of the Curle’s equation. Only a handful of papers exists that report a high level representation of the vehicle geometry and the aim of predicting the fluctuating exterior noise sources. To the author’s knowledge no studies have been conducted in which both these source terms are evaluated quantitatively against measurements. The current paper investigates the degree to which the amplitude of these two source terms can be predicted by using the traditional law-of-the-wall and hex-dominant meshes with isotropic resolution boxes for a detailed ground vehicle geometry. For this purpose, the unstructured segregated commercial FLUENT finite volume method code is used. The flow field is treated as incompressible and the Smagorinsky–Lilly model is used to compute the subgrid stresses. Mean flow quantities are measured with a 14 hole probe for 14 rakes downstream of the side mirror. The dynamic pressure sensors are distributed at 16 different positions over the side window to capture the fluctuating pressure signals. All measurements in this work were conducted at Ford’s acoustic wind tunnel in Cologne. All three simulations accurately predict the velocity magnitude closest to the window and downstream of the mirror head recirculation zone. Some variations in the size and shape of this recirculation zone are found between the different meshes, most probably caused by differences in the detachment of the mirror head boundary layer. The Strouhal number of the shortest simulation was computed from the fundamental frequency of the drag force coefficient. The computed Strouhal number agrees well with the corresponding results from similar objects and gives an indication of an acceptable simulation time. The dynamic pressure sensors at 16 different locations at the vehicle side window were also used to capture the levels of the two dipole source terms. These results are compared with the three simulations. With the exception of three positions, at least one of the three simulations accurately captures the levels of both source terms up to about 1000 Hz. The three positions with less agreement as compared with measurements were found to be in regions sensitive to small changes in the local flow direction.

Publisher

ASME International

Subject

Mechanical Engineering

Reference19 articles.

1. Stapleford, W., and Carr, G., 1970, “Aerodynamic Noise in Road Vehicles, Part 1: The Relationship Between Aerodynamic Noise and the Nature of the Airflow,” The Motor Industry Research Association, p. 1971/2.

2. Thomson, J. , 1964, “Wind Noise—A Practical Approach,” Society of Automotive Engineers, Mar. 30–Apr. 3, p. 840B.

3. Stapleford, W. , 1970, “Aerodynamic Noise in Road Vehicles, Part 2: A Study of the Sources and Significance of Aerodynamic Noise in Saloon Cars,” The Motor Industry Research Association, p. 1972/6.

4. Watanabe, M., Harita, M., and Hayashi, E., 1978, “The Effect of Body Shapes on Wind Noise,” Society of Automotive Engineers, p. 780266.

5. George, A. , 1990, “Automobile Aerodynamic Noise,” Society of Automotive Engineers, Feb. 26–Mar. 2, p. 900315.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3