Investigating the aerodynamic drag and noise characteristics of a standard squareback vehicle with inclined side-view mirror configurations using a hybrid computational aeroacoustics (CAA) approach

Author:

Chode K. K.1ORCID,Viswanathan H.12ORCID,Chow K.3ORCID,Reese H.4ORCID

Affiliation:

1. Materials and Engineering Research Institute, Sheffield Hallam University 1 , Howard Street, Sheffield, England S1 1WB, United Kingdom

2. Department of Engineering and Mathematics, Sheffield Hallam University 2 , Howard Street, Sheffield, England S1 1WB, United Kingdom

3. HORIBA MIRA Ltd. 3 , Watling Street, Nuneaton, Warwickshire CV10 0TU, United Kingdom

4. ANSYS Germany GmbH 4 , Birkenweg 14a, 64925 Darmstadt, Germany

Abstract

This study investigates the aerodynamic noise generated and radiated from a standard squareback body with various inclined side-view mirrors using a hybrid computational aeroacoustics method based on a stress-blended eddy simulation coupled with the Ffowcs-Williams and Hawkings acoustic analogy. The results indicate that in the absence of the side-view mirror, the idealized A-pillar is identified as the subsequent major contributor to the overall noise radiated from the vehicle body, and the coefficient of drag decreases by approximately 13.3% despite a minimal change in the projected frontal area. However, the behavior of the drag coefficient becomes nonlinear and highly dependent on the complex flow features, including the vortex shedding patterns and the interaction between the flow and side surface of the body, with increasing mirror inclination angle. In contrast, the radiated noise exhibits a constant decrease as the mirror inclination angle (θ) increases to 32°. Additionally, when the side-view mirror is considered as the sole source, the noise radiated is minimal for an inclination angle of 16°, and a further increase in inclination angle has no significant reduction on the noise radiated but alters the overall drag coefficient of the vehicle. These findings have practical implications for the design of side-view mirrors to reduce aerodynamic noise in automotive applications and highlight the complex tradeoffs between noise reduction and changes in the drag coefficient that must be considered in such designs.

Funder

VC Scholarship: Sheffield Hallam University & HORIBA MIRA LTD

ANSYS Academic Partnership Grant

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3