Numerical and Experimental Investigation on Flow Capacity and Erosion Wear of Blooey Line in Gas Drilling

Author:

Ying Zhang1,Zhanghua Lian1,Abdelal Gasser F.2,Tiejun Lin1

Affiliation:

1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan, China e-mail:

2. School of Mechanical and Aerospace Engineering, Queen's University, Belfast BT71NN, UK e-mail:

Abstract

Blooey line is a discharge pipe, used to conduct gas to keep drilling rock dust and cuttings away from the drilling rig, reducing the fire hazard and transporting the cuttings to a suitable distance from the well. In this paper, the blooey line's flow capacity and erosion mechanism have been investigated by numerical and experimental method. The model of blooey line, which is commonly used in Sichuan district, China, is established by using a computational fluid dynamics (CFD) method. And, the distribution of pressure field and velocity field in the blooey line are investigated by the CFD model. And, the effect of gas flow rate on impact force and erosion is also discussed. Compared with the simulation results, an experimental apparatus of the blooey line has been conducted under the mechanical similarity principle. The impact force and pressure on the elbows are measured under different gas flow rates. The numerical simulation and experimental method proposed in this paper can provide a reference for layout optimization and flow capacity calculation of blooey line in gas drilling.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference14 articles.

1. Experimental and Numerical Study of Drill String Dynamics in Gas Drilling of Horizontal Wells;J. Nat. Gas Sci. Eng.,2015

2. Recommended Practice for Design and Installation of Offshore Production Platform Piping Systems;API,1991

3. A Comprehensive Procedure to Estimate Erosion in Elbows for Gas/Liquid/Sand Multiphase Flow;ASME J. Energy Resour. Technol.,2006

4. A CFD Based Correlation for Erosion Factor for Long-Radius Elbows and Bends;ASME J. Energy Resour. Technol.,2003

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3