Practical Approach to Functional Testing and Analytical Modeling of Axial Oscillation-Supported Drillstrings

Author:

Omojuwa Emmanuel12,Ahmed Ramadan3,Acquaye James2

Affiliation:

1. University of Oklahoma, 100 E. Boyd St, Norman, OK 73071;

2. JA Oilfield Manufacturing Inc., 2101 SE 67th St, Oklahoma City, OK 73149 e-mail:

3. University of Oklahoma, 100 E. Boyd St, Norman, OK 73071 e-mail:

Abstract

Drillstrings that include one or more axial oscillation tools (AOTs) are referred to as axial oscillation-supported drillstrings. Downhole vibrations induced by these tools in the drillstring are the most efficient method for friction reduction and improving axial force transfer in high-angle and extended-reach wells. Functional testing of axial oscillation tools prior to downhole operations and modeling the dynamic response of axial oscillation-supported drillstring systems are required to predict the performance and functionality of AOTs. This study presents a practical approach for functional testing of axial oscillation tools and a new analytical model for predicting the dynamic response of axial oscillation-supported drillstrings operating at surface conditions. The axial oscillation-supported drillstring is modeled as an elastic continuous system subjected to viscous damping, frictional contact, and displacement (support excitation). The functional test is a unique experimental test procedure designed to measure the pressure drop, pressure fluctuations, and axial displacement of an axial oscillation tool while varying the flow rate and the spring rate of the tool. The introduction of the spring rate as a variable in the new model and functional testing is unique to this study and not considered in the existing literature. Axial displacement and acceleration predicted from the new model closely agrees with the results obtained from the functional tests. The accuracy of the model is also validated with the results of two previously published functional tests. The comparisons demonstrate an average deviation of approximately 14.5% between predictions and measurements. The axial displacement and pressure drop of AOT increased with flow rate or oscillation frequency. The amplitude of axial displacement increased with frequency because of increased pressure drop.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference30 articles.

1. Adaptive and Real-Time Optimal Control of Stick–Slip and Bit Wear in Autonomous Rotary Steerable Drilling;Kamel;ASME J. Energy Resour. Technol.,2017

2. An Experimental Study and Modeling of the Effect of Hydraulic Vibrations on Axial Force Transfer in Horizontal Wellbores;Barakat,2005

3. Modeling the Affect of a Downhole Vibrator;Newman,2009

4. A Step Change in Drilling Efficiency: Quantifying the Effects of Adding an Axial Oscillation Tool Within Challenging Wellbore Environments;McCarthy,2009

5. Axial Oscillation Tools vs Lateral Vibration Tools for Friction Reduction—What’s the Best Way to Shake the Pipe?;Gee,2015

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3