Study of Branched Turboprop Inlet Ducts Using a Multiple Block Grid Calculation Procedure

Author:

Tolpadi A. K.1,Braaten M. E.1

Affiliation:

1. Fluid Mechanics Program, General Electric Research & Development Center, Schenectady, NY 12301

Abstract

An important requirement in the design of an inlet duct of a turboprop engine is the ability to provide foreign object damage protection. A possible method for providing this protection is to include a bypass branch duct as an integral part of the main inlet duct. This arrangement would divert ingested debris away from the engine through the bypass. However, such an arrangement could raise the possibility of separated flow in the inlet, which in turn can increase pressure losses if not properly accounted for during the design. A fully elliptic three-dimensional body-fitted computational fluid dynamics (CFD) code based on pressure correction techniques has been developed that has the capability of performing multiple block grid calculations compatible with present day turboshaft and turboprop branched inlet ducts. Calculations are iteratively performed between sets of overlapping grids with one grid representing the main duct and a second grid representing the branch duct. Both the grid generator and the flow solver have been suitably developed to achieve this capability. The code can handle multiple branches in the flow. Using the converged flow field from this code, another program was written to perform a particle trajectory analysis. Numerical solutions were obtained on a supercomputer for a typical branched duct for which experimental flow and pressure measurements were also made. The flow separation zones predicted by the calculations were found to be in good agreement with those observed in the experimental tests. The total pressure recovery factors measured in the experiments were also compared with those obtained numerically. Within the limits of the grid resolution and the turbulence model, the agreement was found to be fairly good. In order to simulate the path of debris entering the duct, the trajectories of spherical particles of different sizes introduced at the inlet were determined.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3